Package ‘imcRtools’

February 20, 2026
Version 1.16.0

Title Methods for imaging mass cytometry data analysis

Description This R package supports the handling and analysis of imaging mass cytometry
and other highly multiplexed imaging data. The main functionality includes
reading in single-cell data after image segmentation and measurement, data
formatting to perform channel spillover correction and a number of spatial
analysis approaches. First, cell-cell interactions are detected via spatial
graph construction; these graphs can be visualized with cells representing
nodes and interactions representing edges. Furthermore, per cell, its direct
neighbours are summarized to allow spatial clustering. Per image/grouping
level, interactions between types of cells are counted, averaged and
compared against random permutations. In that way, types of cells that
interact more (attraction) or less (avoidance) frequently than expected by
chance are detected.

License GPL-3
Depends R (>=4.1), SpatialExperiment

Imports S4Vectors, stats, utils, SummarizedExperiment, methods,
pheatmap, scuttle, stringr, readr, EBImage, cytomapper, abind,
BiocParallel, viridis, dplyr, magrittr, DT, igraph,
SingleCellExperiment, vroom, BiocNeighbors, RTriangle, ggraph,
tidygraph, ggplot2, data.table, sf, concaveman, tidyselect,
distances, MatrixGenerics, rlang, grDevices

Suggests CATALYST, grid, tidyr, BiocStyle, knitr, rmarkdown, markdown,
testthat

biocViews ImmunoOncology, SingleCell, Spatial, Datalmport, Clustering

VignetteBuilder knitr
URL https://github.com/BodenmillerGroup/imcRtools

BugReports https://github.com/BodenmillerGroup/imcRtools/issues
RoxygenNote 7.3.2

Encoding UTF-8

git_url https://git.bioconductor.org/packages/imcRtools

git_branch RELEASE_3_22

git_last_commit 13fa3df

git_last_commit_date 2025-10-29

https://github.com/BodenmillerGroup/imcRtools
https://github.com/BodenmillerGroup/imcRtools/issues

2 aggregateNeighbors

Repository Bioconductor 3.22
Date/Publication 2026-02-19

Author Nils Eling [aut],
Tobias Hoch [ctb],
Vito Zanotelli [ctb],
Jana Fischer [ctb],
Daniel Schulz [ctb, cre] (ORCID:
<https://orcid.org/0000-0002-0913-1678>),
Lasse Meyer [ctb],
Lutz Marlene [ctb],
Schiller Chiara [ctb],
Ibafiez Victor [ctb]

Maintainer Daniel Schulz <daniel.schulz@uzh.ch>

Contents
aggregateNeighbors L 2
binAcrossPixels L e 4
buildSpatialGraph 5
countnteractions e e e e e e e 8
detectCommunity e e e e e 10
detectSpatialContext e e e 12
distToCells e 14
filterPixels 15
filterSpatialContext e e e e 17
findBorderCells e e e 19
patchDetection 20
patchSize 22
plotlnteractions 23
plotSpatial e e e e e 25
plotSpatialContext L 28
plotSpotHeatmap e 31
readlmagefromTXT o L 33
readSCEfromTIFF 34
readSCEfromTXT e 35
1ead_CPOUL. o o i e e e e e e 37
read_steinbock L L L 39
show_cpout_features 41
testnteractions L. L e e e e e e e e 42

Index 46

aggregateNeighbors Function to aggregate all neighbors of each cell.
Description

Function to summarize categorical or expression values of all neighbors of each cell.

https://orcid.org/0000-0002-0913-1678

aggregateNeighbors 3
Usage
aggregateNeighbors(
object,
colPairName,
aggregate_by = c("metadata”, "expression”),

count_by = NULL,
proportions = TRUE,
assay_type = NULL,

subset_row = NULL,
statistic = c¢("mean”, "median”, "sd”, "var"),
name = NULL
)
Arguments
object a SingleCellExperiment or SpatialExperiment object
colPairName single character indicating the colPair (object) entry containing the neighbor

aggregate_by

count_by

proportions

assay_type

subset_row

statistic

name

Value

information.

character specifying whether the neighborhood should be summarized by cel-
lular features stored in colData(object) (aggregate_by = "metdata") or by
marker expression of the neighboring cells (aggregate_by = "expression”).

for summarize_by = "metadata”, a single character specifying the colData(object)
entry containing the cellular metadata that should be summarized across each
cell’s neighborhood.

single logical indicating whether aggregated metadata should be returned in
form of proportions instead of absolute counts.

for summarize_by = "expression”, single character indicating the assay slot to
use.

for summarize_by = "expression”, an integer, logical or character vector spec-
ifying the features to use. If NULL, defaults to all features.

for summarize_by = "expression”, a single character specifying the statistic
to be used for summarizing the expression values across all neighboring cells.
"non

Supported entries are "mean", "median", "sd", "var". Defaults to "mean" if not
specified.

single character specifying the name of the data frame to be saved in the colData(object).
Defaults to "aggregatedNeighbors" when summarize_by = "metadata” or "statis-
tic_aggregatedExpression" when summarize_by = "expression”.

returns an object of class(object) containing the aggregated values in form of a DataFrame object
in colData(object)[[name]].

Author(s)

Daniel Schulz (<daniel.schulz@uzh.ch>)

binAcrossPixels

Examples

library(cytomapper)
data(pancreasSCE)

sce <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",
type = "knn", k = 3)

Aggregating neighboring cell-types
sce <- aggregateNeighbors(sce, colPairName = "knn_interaction_graph”,
aggregate_by = "metadata”,
count_by = "CellType")
sce$aggregatedNeighbors

Aggregating neighboring expression values

sce <- aggregateNeighbors(sce, colPairName = "knn_interaction_graph”,
aggregate_by = "expression”,
assay_type = "exprs”,
statistic = "mean”)

sce$mean_aggregatedExpression

binAcrossPixels

Aggregate consecutive pixels per single-metal spot

Description

Helper function for estimating the spillover matrix. Per metal spot, consecutive pixels a aggregated
(default: summed).

Usage
binAcrossPixels(
object,
bin_size,
spot_id = "sample_id",
assay_type = "counts”,
statistic = "sum”,
)
Arguments
object a SingleCellExperiment object containing pixel intensities for all channels.
Individual pixels are stored as columns and channels are stored as rows.
bin_size single numeric indicating how many consecutive pixels per spot should be ag-
gregated.
spot_id character string indicating which colData(object) entry stores the isotope
names of the spotted metal.
assay_type character string indicating which assay to use.
statistic character string indicating the statistic to use for aggregating consecutive pixels.

additional arguments passed to aggregateAcrossCells

buildSpatialGraph 5

Value

returns the binned pixel intensities in form of a SingleCellExperiment object

Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>)

See Also

aggregateAcrossCells for the aggregation function

Examples

path <- system.file("extdata/spillover”, package = "imcRtools")
Read in .txt files

sce <- readSCEfromTXT(path)

dim(sce)

Visualizes heatmap before aggregation
plotSpotHeatmap(sce)

Sum consecutive pixels
sce <- binAcrossPixels(sce, bin_size = 10)
dim(sce)

Visualizes heatmap after aggregation
plotSpotHeatmap(sce)

buildSpatialGraph Builds an interaction graph based on the cells’ locations

Description

Function to define cell-cell interactions via distance-based expansion, delaunay triangulation or k
nearest neighbor detection.

Usage

buildSpatialGraph(
object,
img_id,
type = c("expansion”, "knn", "delaunay"),
k = NULL,
directed = TRUE,
max_dist = NULL,
threshold = NULL,
coords = c("Pos_X", "Pos_Y"),
name = NULL,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam(),

6 buildSpatialGraph

Arguments

object a SingleCellExperiment or SpatialExperiment object

img_id single character indicating the colData(object) entry containing the unique
image identifiers.

type single character specifying the type of graph to be build. Supported entries
are "expansion” (default) to find interacting cells via distance thresholding;
"delaunay” to find interactions via delaunay triangulation; "knn" to find the k
nearest neighboring cells.

k (when type = "knn") single numeric integer defining the number of nearest
neighbors to search for.

directed (when type = "knn") should the returned graph be directed? (see details).

max_dist (when type = "knn" or type = "delaunay") the maximum distance at which to
consider neighboring cells. All neighbors within a distance larger than max_dist
will be excluded from graph construction.

threshold (when type = "expansion”) single numeric specifying the maximum distance
for considering neighbors

coords character vector of length 2 specifying the names of the colData (for a SingleCellExperiment
object) or the spatialCoords entries of the cells’ x and y locations.

name single character specifying the name of the graph.

BNPARAM a BiocNeighborParam object defining the algorithm to use.

BPPARAM aBiocParallelParam-class object defining how to parallelize computations.
additional parameters passed to the findNeighbors function (type = "expansion”),
the triangulate function (type = "delaunay"”) or the findKNN function (type
="knn")).

Value

returns a SpatialExperiment or SingleCellExperiment containing the graph in form of a SelfHits
object in colPair(object, name). The object is grouped by entries in the img_id slot.

Building an interaction graph

This function defines interacting cells in different ways. They are based on the cells’ centroids and
do not incorporate cell shape or area.

1. When type = "expansion”, all cells within the radius threshold are considered interacting
cells.

2. When type = "delaunay"”, interacting cells are found via a delaunay triangulation of the cells’
centroids.

3. When type = "knn", interacting cells are defined as the k nearest neighbors in the 2D spatial
plane.

The directed parameter only affects graph construction via k nearest neighbor search. For directed
= FALSE, each interaction will be stored as mutual edge (e.g. node 2 is connected to node 10 and
vise versa). For type = "expansion” and type = "delaunay”, each edge is stored as mutual edge
by default.

The graph is stored in form of a Sel1fHits objectin colPair (object, name). This object can be re-
garded as an edgelist and coerced to an igraph object via graph_from_edgelist(as.matrix(colPair(object,
name))).

buildSpatialGraph 7

Choosing the graph construction method

When finding interactions via expansion or knn, the findNeighbors or findKNN functions are
used, respectively. Both functions accept the BNPARAM parameter via which the graph construc-
tion method can be defined (default KmknnParam). For an overview on the different algorithms, see
BiocNeighborParam. Within the BiocNeighborParamobject, distance can be setto "Euclidean”
(default), "Manhattan” or "Cosine”.

Ordering of the output object

The buildSpatialGraph function operates on individual images. Therefore the returned object is
grouped by entries in img_id. This means all cells of a given image are grouped together in the
object. The ordering of cells within each individual image is the same as the ordering of these cells
in the input object.

Author(s)

Nils Eling (<nils.eling@dgbm.uzh.ch>)

See Also

findNeighbors for the function finding interactions via expansion
findKNN for the function finding interactions via nearest neighbor search
triangulate for the function finding interactions via delaunay triangulation

plotSpatial for visualizing spatial graphs

Examples

path <- system.file("extdata/mockData/steinbock”, package = "imcRtools")
spe <- read_steinbock(path)

Constructing a graph via expansion
spe <- buildSpatialGraph(spe, img_id = "sample_id",

type = "expansion”, threshold = 10)
colPair(spe, "expansion_interaction_graph")

Constructing a graph via delaunay triangulation

spe <- buildSpatialGraph(spe, img_id = "sample_id",
type = "delaunay")

colPair(spe, "delaunay_interaction_graph”)

Constructing a graph via k nearest neighbor search
spe <- buildSpatialGraph(spe, img_id = "sample_id",

type = "knn", k = 5)
colPair(spe, "knn_interaction_graph")

8 countlnteractions

countInteractions Summarizes cell-cell interactions within grouping levels (e.g. images)

Description

Function to calculate the average number of neighbors B that a cell of type A has using different

approaches.
Usage
countInteractions(
object,
group_by,
label,
colPairName,
method = c("classic”, "conditional”, "patch”, "interaction"),
patch_size = NULL
)
Arguments
object a SingleCellExperiment or SpatialExperiment object .
group_by a single character indicating the colData(object) entry by which interactions
are grouped. This is usually the image ID or patient ID.
label single character specifying the colData(object) entry which stores the cell
labels. These can be cell-types labels or other metadata.
colPairName single character indicating the colPair(object) entry containing cell-cell in-
teractions in form of an edge list.
method which cell-cell interaction counting method to use (see details)
patch_size if method = "patch”, a single numeric specifying the minimum number of neigh-
bors of the same type to be considered a patch (see details)
Value

a DataFrame containing one row per group_by entry and unique 1abel entry combination (from_label,
to_label). The ct entry stores the interaction count as described in the details. NA is returned if a
certain label is not present in this grouping level.

Counting and summarizing cell-cell interactions

In principle, the countInteractions function counts the number of edges (interactions) between
each set of unique entries in colData(object)[[label]]. Simplified, it counts for each cell
of type A the number of neighbors of type B. This count is averaged within each unique entry
colData(object)[[group_by]] in four different ways:

1. method = "classic"”: The count is divided by the total number of cells of type A. The final count
can be interpreted as "How many neighbors of type B does a cell of type A have on average?"

2. method = "conditional”: Formerly named "histocat". The count is divided by the number of
cells of type A that have at least one neighbor of type B. The final count can be interpreted as "How

countlnteractions 9

many neighbors of type B has a cell of type A on average, given it has at least one neighbor of type
B?".

3. method = "patch”: For each cell, the count is binarized to 0 (less than patch_size neighbors of
type B) or 1 (more or equal to patch_size neighbors of type B). The binarized counts are averaged
across all cells of type A. The final count can be interpreted as "What fraction of cells of type A
have at least a given number of neighbors of type B?"

4. method = "interaction”: The count is divided by the total number of interactions from cell
type A. The final count can be interpreted as the fraction of interactions of cell type A that occur
with cell type B.

Author(s)

Vito Zanotelli

Jana Fischer

adapted by Nils Eling (<nils.eling@dgbm.uzh.ch>)
adapted by Marlene Lutz (<marlene.lutz@uzh.ch>)

References

Schulz, D. et al., Simultaneous Multiplexed Imaging of mRNA and Proteins with Subcellular Res-
olution in Breast Cancer Tissue Samples by Mass Cytometry., Cell Systems 2018 6(1):25-36.e5

Schapiro, D. et al., histoCAT: analysis of cell phenotypes and interactions in multiplex image cy-
tometry data, Nature Methods 2017 14, p. 873-876

See Also

testInteractions for testing cell-cell interactions per grouping level.

Examples

library(cytomapper)
data(pancreasSCE)

pancreasSCE <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",
type = "knn", k = 3)

Classic style calculation
(out <- countlInteractions(pancreasSCE,
group_by = "ImageNb",
label = "CellType”,
method = "classic”,
colPairName = "knn_interaction_graph"))

Conditional style calculation
(out <- countlInteractions(pancreasSCE,
group_by = "ImageNb",
label = "CellType”,
method = "conditional”,
colPairName = "knn_interaction_graph"))

Patch style calculation
(out <- countlInteractions(pancreasSCE,
group_by = "ImageNb",

https://www.sciencedirect.com/science/article/pii/S2405471217305434
https://www.sciencedirect.com/science/article/pii/S2405471217305434
https://www.nature.com/articles/nmeth.4391
https://www.nature.com/articles/nmeth.4391

10 detectCommunity

label = "CellType”,

method = "patch”,

patch_size = 3,

colPairName = "knn_interaction_graph"))

Interaction style calculation
(out <- countlInteractions(pancreasSCE,
group_by = "ImageNb",
label = "CellType",
method = "interaction”,
colPairName = "knn_interaction_graph"))

detectCommunity Detect the spatial community of each cell

Description

Function to detect the spatial community of each cell as proposed by Jackson et al., The single-cell
pathology landscape of breast cancer, Nature, 2020. Each cell is clustered based on its interactions
as defined by a spatial object graph.

Usage

detectCommunity(
object,
colPairName,
size_threshold = 0,
group_by = NULL,

name = "spatial_community”,
cluster_fun = "louvain”,
BPPARAM = SerialParam()

)

Arguments
object a SingleCellExperiment or SpatialExperiment object
colPairName single character indicating the colPair (object) entry containing the neighbor
information.

size_threshold single positive numeric that specifies the minimum number of cells per commu-
nity. Defaults to 0.

group_by single character indicating that spatial community detection will be performed
separately for all unique entries to colData(object)[, group_by].

name single character specifying the name of the output saved in colData(object).
Defaults to "spatial_community".

cluster_fun single character specifying the function to use for community detection. Op-
tions are all strings that contain the suffix of an igraph community detection
algorithm (e.g. "walktrap"). Defaults to "louvain".

BPPARAM a BiocParallelParam-class object defining how to parallelize computations.
Applicable when group_by is specified and defaults to SerialParam(). For re-
producibility between runs, we recommend defining RNGseed in the BiocParallelParam-class
object.

https://www.nature.com/articles/s41586-019-1876-x
https://www.nature.com/articles/s41586-019-1876-x

detectCommunity 11

Value

returns an object of class(object) containing a new column entry to colData(object)[[name]].

Spatial community detection procedure

1. Create an igraph object from the edge list stored in colPair(object, colPairName).
2. Perform community detection using the specified cluster_fun algorithm.

3. Store the community IDs in a vector and replace all communities with a size smaller than
size_threshold by NA.

Optional steps: Specify group_by to perform spatial community detection separately for all unique
entries to colData(object) [, group_by] e.g. for tumor and non-tumor cells.

Author(s)

Lasse Meyer (<lasse.meyer@uzh.ch>)

References

Jackson et al., The single-cell pathology landscape of breast cancer, Nature, 2020

Examples

library(cytomapper)
library(BiocParallel)
data(pancreasSCE)

sce <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",
type = "expansion”,
name = "neighborhood”,
threshold = 20)

Detect spatial community

set.seed(22)

sce <- detectCommunity(sce,
colPairName = "neighborhood"”,
size_threshold = 10)

plotSpatial(sce,
img_id = "ImageNb",
node_color_by = "spatial_community”,
scales = "free")

Detect spatial community - specify group_by

sce <- detectCommunity(sce,
colPairName = "neighborhood”,
group_by = "CellType”,
size_threshold = 10,
BPPARAM = SerialParam(RNGseed = 22))

plotSpatial(sce,
img_id = "ImageNb",
node_color_by = "spatial_community”,

scales = "free")

https://www.nature.com/articles/s41586-019-1876-x

12 detectSpatialContext

detectSpatialContext Detect the spatial context of each cell based on its neighborhood

Description

Function to detect the spatial context (SC) of each cell. Based on its sorted (high-to-low) cellular
neighborhood (CN) fractions in a spatial interaction graph, the SC of each cell is assigned as the set
of CNs that cumulatively exceed a user-defined fraction threshold.

The term was coined by Bhate S. et al., Tissue schematics map the specialization of immune tissue
motifs and their appropriation by tumors, Cell Systems, 2022 and describes tissue regions in which
distinct CNs may be interacting.

Usage

detectSpatialContext(
object,
entry = "aggregatedNeighbors”,
threshold = 9.9,

name = "spatial_context”
)
Arguments
object a SingleCellExperiment or SpatialExperiment object
entry single character specifying the colData(object) entry containing the aggregateNeighbors
DataFrame output. Defaults to "aggregatedNeighbors".
threshold single numeric between 0 and 1 that specifies the fraction threshold for SC as-
signment. Defaults to 0.9.
name single character specifying the name of the output saved in colData(object).
Defaults to "spatial_context".
Value

returns an object of class(object) containing a new column entry to colData(object)[[name]]

Spatial context background

The function relies on CN fractions for each cell in a spatial interaction graph (originally a k-nearest
neighbor (KNN) graph).

We can retrieve the CN fractions using the buildSpatialGraph and aggregateNeighbors functions.

The window size (k for KNN) for buildSpatialGraph should reflect a length scale on which bio-
logical signals can be exchanged and depends, among others, on cell density and tissue area. In
view of their divergent functionality, we recommend to use a larger window size for SC (interaction
between local processes) than for CN (local processes) detection.

Subsequently, the CN fractions are sorted from high-to-low and the SC of each cell is assigned the
minimal combination of SCs that additively surpass a user-defined threshold. The default threshold
of 0.9 aims to represent the dominant CNs, hence the most prevalent signals, in a given window.

For more details, please refer to: Bhate S. et al., Tissue schematics map the specialization of immune
tissue motifs and their appropriation by tumors, Cell Systems, 2022.

https://doi.org/10.1016/j.cels.2021.09.012
https://doi.org/10.1016/j.cels.2021.09.012
https://doi.org/10.1016/j.cels.2021.09.012
https://doi.org/10.1016/j.cels.2021.09.012

detectSpatialContext 13

Author(s)

Lasse Meyer (<lasse.meyer@uzh.ch>)

References

Bhate S. et al., Tissue schematics map the specialization of immune tissue motifs and their appro-
priation by tumors, Cell Systems, 2022

See Also

filterSpatialContext for the function to filter spatial contexts

plotSpatialContext for the function to plot spatial context graphs

Examples

set.seed(22)
library(cytomapper)
data(pancreasSCE)

1. Cellular neighborhood (CN)
sce <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",

type = "knn",
name = "knn_cn_graph”,
k = 5)
sce <- aggregateNeighbors(sce, colPairName = "knn_cn_graph",

aggregate_by = "metadata”,
count_by = "CellType”,
name = "aggregatedCellTypes")

cur_cluster <- kmeans(sce$aggregatedCellTypes, centers = 3)
sce$cellular_neighborhood <- factor(cur_cluster$cluster)

plotSpatial(sce, img_id = "ImageNb",

colPairName = "knn_cn_graph”,
node_color_by = "cellular_neighborhood”,
scales = "free")

2. Spatial context (SC)

sce <- buildSpatialGraph(sce, img_id = "ImageNb",
type = "knn",
name = "knn_sc_graph”,
k = 15)

sce <- aggregateNeighbors(sce, colPairName = "knn_sc_graph"”,
aggregate_by = "metadata”,
count_by = "cellular_neighborhood”,
name = "aggregatedNeighborhood")

Detect spatial context
sce <- detectSpatialContext(sce, entry = "aggregatedNeighborhood”,
threshold = 0.9)

plotSpatial(sce, img_id = "ImageNb",
colPairName = "knn_sc_graph”,
node_color_by = "spatial_context"”,

https://doi.org/10.1016/j.cels.2021.09.012
https://doi.org/10.1016/j.cels.2021.09.012

14 distToCells

scales = "free")

distToCells Function to calculate distance to cells of interest

Description

Function to return the min, max, mean or median distance to the cells of interest for each cell in the
data. In the case of patched/clustered cells negative distances are returned by default which indicate
the distance of the cells of interest to the cells that are not of the type of cells of interest.

Usage
distToCells(
object,
x_cells,
img_id,
name = "distToCells”,
coords = c("Pos_X", "Pos_Y"),
statistics = "min",

return_neg = TRUE,
BPPARAM = SerialParam()

)
Arguments
object a SingleCellExperiment or SpatialExperiment object
x_cells logical vector of length equal to the number of cells contained in object. TRUE
entries define the cells to which distances will be calculated.
img_id single character indicating the colData(object) entry containing the unique
image identifiers.
name character specifying the name of the colData entry to safe the distances in.
coords character vector of length 2 specifying the names of the colData (for a SingleCellExperiment
object) or the spatialCoords entries of the cells’ x and y locations.
statistics one of "min", "max", "mean" or "meadian" specifying the distance statistics to
use when computing the distances.
return_neg logical indicating whether negative distances are to be returned for the distances
of patched/spatially clustered cells.
BPPARAM aBiocParallelParam-class object defining how to parallelize computations.
Value

returns an object of class(object) containing a new column entry to colData(object)[[name]].
Cells in the object are grouped by entries in img_id.

filterPixels 15

Ordering of the output object

The minDistToCells function operates on individual images. Therefore the returned object is
grouped by entries in img_id. This means all cells of a given image are grouped together in the
object. The ordering of cells within each individual image is the same as the ordering of these cells
in the input object.

Author(s)

Daniel Schulz & Bruno Palau (<daniel. schulz@uzh.ch>)

Examples

library(cytomapper)
data(pancreasSCE)

Build interaction graph
pancreasSCE <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",
type = "expansion”,threshold = 20)

Detect patches of "celltype_B" cells

pancreasSCE <- patchDetection(pancreasSCE,
img_id = "ImageNb",
patch_cells = pancreasSCE$CellType == "celltype_B",
colPairName = "expansion_interaction_graph",
min_patch_size = 20,
expand_by = 1)

plotSpatial (pancreasSCE,
img_id = "ImageNb",
node_color_by = "patch_id",
scales = "free")

Distance to celltype_B patches
pancreasSCE <- distToCells(pancreasSCE,
x_cells = !is.na(pancreasSCE$patch_id),
coords = c("Pos_X","Pos_Y"),
statistics = "min”,
img_id = "ImageNb")

plotSpatial (pancreasSCE,
img_id = "ImageNb",
node_color_by = "distToCells"”,
scales = "free")

filterPixels Filter pixels based on their assigned masses

Description

Helper function for estimating the spillover matrix. After assigning each pixel to a spotted mass,
this function will filter incorrectly assigned pixels and remove small pixel sets.

16 filterPixels
Usage
filterPixels(
object,
bc_id = "bc_id",
spot_mass = "sample_mass",

minevents = 40,
correct_pixels = TRUE

)
Arguments

object a SingleCellExperiment object containing pixel intensities per channel. Indi-
vidual pixels are stored as columns and channels are stored as rows.

bc_id character string indicating which colData(object) entry stores the estimated
mass

spot_mass character string indicating which colData(object) entry stores the true isotope
mass of the spotted metal.

minevents single numeric indicating the threshold under which pixel sets are excluded from

spillover estimation.

correct_pixels logical indicating if incorrectly assigned pixels should be excluded from spillover

Value

estimation.

returns a SingleCellExperiment object in which colData(object)$bc_id has been adjusted based
on the filter criteria.

Author(s)

Vito Zanotelli, adapted by Nils Eling (<nils.eling@dgbm.uzh.ch>)

Examples

path <- system.file("extdata/spillover”, package = "imcRtools")

sce <-

readSCEfromTXT (path)

assay(sce, "exprs") <- asinh(counts(sce)/5)

Pre-process via CATALYST

library(CATALYST)

bc_key <- as.numeric(unique(sce$sample_mass))
sce <- assignPrelim(sce, bc_key = bc_key)

sce <- estCutoffs(sce)

sce <- applyCutoffs(sce)

sce <- filterPixels(sce)

table(sce$sample_mass, sce$bc_id)

filterSpatialContext 17

filterSpatialContext Filter spatial contexts

Description

Function to filter detected spatial contexts (SCs) based on a user-defined threshold for number of
group entries and/or cells.

Usage
filterSpatialContext(
object,
entry = "spatial_context”,

group_by = "sample_id",
group_threshold = NULL,
cells_threshold = NULL,

name = "spatial_context_filtered”
)
Arguments
object a SingleCellExperiment or SpatialExperiment object
entry a single character specifying the colData(object) entry containing the detectSpatialContext
output. Defaults to "spatial_context".
group_by a single character indicating the colData(object) entry by which SCs are

grouped. This is usually the image or patient ID. Defaults to "sample_id".
group_threshold
a single numeric specifying the minimum number of group entries in which a
SC is detected.
cells_threshold
a single numeric specifying the minimum total number of cells in a SC.

name a single character specifying the name of the output saved in colData(object).
Defaults to "spatial_context_filtered".
Value

returns an object of class(object) containing a new column entry to colData(object)[[name]]
and a new data. frame entry to metadata(object)[["filterSpatialContext”]] containing the
group and cell counts per SC.

Author(s)

Lasse Meyer (<lasse.meyer@uzh.ch>)

References

Bhate S. et al., Tissue schematics map the specialization of immune tissue motifs and their appro-
priation by tumors, Cell Systems, 2022

https://doi.org/10.1016/j.cels.2021.09.012
https://doi.org/10.1016/j.cels.2021.09.012

18 filterSpatialContext

See Also

detectSpatialContext for the function to detect spatial contexts

plotSpatialContext for the function to plot spatial context graphs

Examples

set.seed(22)
library(cytomapper)
data(pancreasSCE)

1. Cellular neighborhood (CN)
sce <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",

type = "knn",
name = "knn_cn_graph”,
k = 5)
sce <- aggregateNeighbors(sce, colPairName = "knn_cn_graph",

aggregate_by = "metadata”,
count_by = "CellType”,
name = "aggregatedCellTypes")

cur_cluster <- kmeans(sce$aggregatedCellTypes, centers = 3)
sce$cellular_neighborhood <- factor(cur_cluster$cluster)

plotSpatial(sce, img_id = "ImageNb",

colPairName = "knn_cn_graph",
node_color_by = "cellular_neighborhood”,
scales = "free")

2. Spatial context (SC)

sce <- buildSpatialGraph(sce, img_id = "ImageNb",
type = "knn",
name = "knn_sc_graph”,
k =15)

sce <- aggregateNeighbors(sce, colPairName = "knn_sc_graph”,
aggregate_by = "metadata”,
count_by = "cellular_neighborhood”,
name = "aggregatedNeighborhood")

Detect spatial context
sce <- detectSpatialContext(sce, entry = "aggregatedNeighborhood”,
threshold = 0.9)

plotSpatial(sce, img_id = "ImageNb",

colPairName = "knn_sc_graph”,
node_color_by = "spatial_context"”,
scales = "free")

Filter spatial context

By group

sce <- filterSpatialContext(sce, group_by = "ImageNb",
group_threshold = 2)

plotSpatial(sce, img_id = "ImageNb",
colPairName = "knn_sc_graph",

findBorderCells

node_color_by = "spatial_context_filtered”,
scales = "free")

By cells
sce <- filterSpatialContext(sce, group_by = "ImageNb",
cells_threshold = 15)

plotSpatial(sce, img_id = "ImageNb",
colPairName = "knn_sc_graph”,
node_color_by = "spatial_context_filtered”,
scales = "free")

19

findBordercCells Find cells at the image border

Description

Detection of cells close to the image border for subsequent exclusion from downstream analyses.

Usage

findBorderCells(object, img_id, border_dist, coords = c("Pos_X", "Pos_Y"))

Arguments
object a SingleCellExperiment or SpatialExperiment object.
img_id single character indicating the colData(object) entry containing the unique
image identifiers.
border_dist single numeric defining the distance to the image border. The image border here
is defined as the minimum and maximum among the cells’ x and y location.
coords character vector of length 2 specifying the names of the colData (for a SingleCellExperiment
object) or the spatialCoords entries indicating the cells’ x and y locations.
Value

an object of class(object) containing the logical border_cells entry in the colData slot.

Examples

library(cytomapper)
data("pancreasSCE")

sce <- findBorderCells(pancreasSCE, img_id = "ImageNb",

border_dist = 10)

plotSpatial(sce,
img_id = "ImageNb",
node_color_by = "border_cells”,

scales = "free")

20

patchDetection

patchDetection

Function to detect patches containing defined cell types

Description

Function to detect spatial clusters of defined types of cells. By defining a certain distance threshold,
all cells within the vicinity of these clusters are detected as well.

Usage
patchDetection(
object,
patch_cells,
colPairName,
min_patch_size = 1,
name = "patch_id",
expand_by = 0,
coords = c("Pos_X", "Pos_Y"),
convex = FALSE,
img_id = NULL,
BPPARAM = SerialParam()
)
Arguments
object a SingleCellExperiment or SpatialExperiment object

patch_cells

colPairName

min_patch_size

name

expand_by

coords

convex

img_id

BPPARAM

Value

logical vector of length equal to the number of cells contained in object. TRUE
entries define the cells to consider for patch detection (see Details).

single character indicating the colPair (object) entry containing the neighbor
information.

single integer indicating the minimum number of connected cells that make up
a patch before expansion.

single character specifying the colData entry storing the patch IDs in the re-
turned object.

single numeric indicating in which vicinity range cells should be considered as
belonging to the patch (see Details).

character vector of length 2 specifying the names of the colData (for a SingleCellExperiment
object) or the spatialCoords entries of the cells’ x and y locations.

should the convex hull be computed before expansion? Default: the concave
hull is computed.

single character indicating the colData(object) entry containing the unique
image identifiers.

aBiocParallelParam-class object defining how to parallelize computations.

An object of class(object) containing a patch ID for each cell in colData(object)[[name]].
If expand_by > @, cells in the output object are grouped by entries in img_id.

patchDetection 21

Detecting patches of defined cell types

This function works as follows:
1. Only cells defined by patch_cells are considered for patch detection.

2. Patches of connected cells are detected. Here, cell-to-cell connections are defined by the inter-
action graph stored in colPair(object, colPairName). At this point, patches that contain fewer
than min_patch_size cells are removed.

3. If expand_by > 0, a concave (default) or convex hull is constructed around each patch. This is
is then expanded by expand_by and cells within the expanded hull are detected and assigned to the
patch. This expansion only works if a patch contains at least 3 cells.

The returned object contains an additional entry colData(object)[[namel], which stores the
patch ID per cell. NA indicate cells that are not part of a patch.

Ordering of the output object

If expand_by > 0, the patchDetection function operates on individual images. Therefore the re-
turned object is grouped by entries in img_id. This means all cells of a given image are grouped
together in the object. The ordering of cells within each individual image is the same as the ordering
of these cells in the input object.

If expand_by = 9, the ordering of cells in the output object is the same as in the input object.

Author(s)

Tobias Hoch
adapted by Nils Eling (<nils.eling@dgbm.uzh.ch>)

References

Hoch, T. et al., Multiplexed Imaging Mass Cytometry of Chemokine Milieus in Metastatic Melanoma
Characterizes Features of Response to Immunotherapy., bioRxiv 2021

Examples

library(cytomapper)
data(pancreasSCE)

Visualize cell types

plotSpatial (pancreasSCE,
img_id = "ImageNb",
node_color_by = "CellType",
scales = "free")

Build interaction graph
pancreasSCE <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",
type = "expansion”, threshold = 20)

Detect patches of "celltype_B" cells

pancreasSCE <- patchDetection(pancreasSCE,
patch_cells = pancreasSCE$CellType == "celltype_B",
colPairName = "expansion_interaction_graph")

plotSpatial (pancreasSCE,
img_id = "ImageNb”,
node_color_by = "patch_id",

https://www.biorxiv.org/content/10.1101/2021.07.29.454093v1
https://www.biorxiv.org/content/10.1101/2021.07.29.454093v1

22 patchSize

scales = "free")

Include cells in vicinity

pancreasSCE <- patchDetection(pancreasSCE,
patch_cells = pancreasSCE$CellType == "celltype_B",
colPairName = "expansion_interaction_graph",
expand_by = 20,
img_id = "ImageNb")

plotSpatial (pancreasSCE,
img_id = "ImageNb",
node_color_by = "patch_id",
scales = "free")

patchSize Function to compute the area of c3ll patches

Description

This function constructs polygons around patch cells and computes their area.

Usage
patchSize(
object,
patch_name = "patch_id",
coords = c("Pos_X", "Pos_Y"),
convex = FALSE
)
Arguments
object a SingleCellExperiment or SpatialExperiment object
patch_name single character indicating the colData(object) entry containing the patch cell
identifiers.
coords character vector of length 2 specifying the names of the colData (for a SingleCellExperiment
object) or the spatialCoords entries of the cells’ x and y locations.
convex should the convex hull be computed to construct the polygon? Default: the
concave hull is computed.
Value

A DataFrame object containing the patch identifier, the constructed polygon and the polygon size.

Author(s)

Nils Eling (<nils.eling@dgbm.uzh.ch>)

plotInteractions 23

Examples

library(cytomapper)
data(pancreasSCE)

Build interaction graph
pancreasSCE <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",
type = "expansion”, threshold = 20)

Detect patches of "celltype_B" cells
pancreasSCE <- patchDetection(pancreasSCE,

patch_cells = pancreasSCE$CellType == "celltype_B",
expand_by = 5, img_id = "ImageNb",
colPairName = "expansion_interaction_graph")
Compute the patch area
patchSize(pancreasSCE)
plotInteractions Plot interaction graph

Description

Function to plot directed interaction graphs based on symbolic edge-lists and vertex metadata. The
user can specify node, node_label and edge aesthetics using dedicated arguments. The resulting plot
can be further refined with ‘ggplot2‘ for node styling and ‘ggraph‘ for edge-specific customization.

Usage

plotInteractions(
out,
object,
label,
group_by,
node_color_by = NULL,
node_size_by = NULL,
node_color_fix = NULL,
node_size_fix = NULL,
node_label_repel = TRUE,
node_label_color_by = NULL,
node_label_color_fix = NULL,
edge_color_by = NULL,
edge_color_fix = NULL,
edge_width_by = NULL,
edge_width_fix = NULL,
draw_edges = TRUE,
return_data = FALSE,
graph_layout = "circle”

24

Arguments

out

object

label

group_by

node_color_by

node_size_by

node_color_fix

node_size_fix

plotInteractions

a data frame, usually the output from countInteractions or testInteractions,
representing an edge list with columns "group_by", "from_label” and "to_label”.
Additional columns may be included to specify edge attributes (weight or color).

a SingleCellExperiment or SpatialExperiment object.

single character specifying the colData(object) entry which stores the cell
labels. These can be cell-types labels or other metadata entries.

a single character indicating the colData(object) entry by which interactions
are grouped. This is usually the image or patient ID. a single character indicating
the colData(object)

n o n

single character either NULL, "name”, "n_cells"”, "n_group” by which the nodes
should be colored.

single character either NULL, "n_cells”,"n_group” by which the size of the
nodes are defined.

single character specifying the color of all nodes.

single numeric specifying the size of all nodes.

node_label_repel

should nodes be labelled? Defaults to TRUE.

node_label_color_by

non non

single character either NULL, "name”, "n_cells"”, "n_group"” by which the node
labels should be colored.

node_label_color_fix

edge_color_by

edge_color_fix

edge_width_by

edge_width_fix
draw_edges

return_data

graph_layout

Value

single character specifying the color of all node labels.

single character indicating the name of the column of "out" used represent edge
colors. This column is usually newly added by the user and must assign a unique
value to each *from_label’—’to_label’ pair. Typically, these values could encode
the direction of significantly interacting cell type pairs.

single character specifying the color of all edges.

single character indicating the name of the column of "out” used to scale edge
widths. The values in this column are averaged for each ’from_label’—"to_label’
pair. Typically, this could be the ’ct’ column from of "out"” or a newly added
column representing an interaction feature.

single numeric specifying the width of all edges.
should edges be drawn between nodes? Defaults to TRUE.

should the edge list and vertex metadata for graph construction be returned as a
list of two data.frames?

single character of "circle”, "chord”, "linear”, "fr", "kk", "drl”, "stress",
"graphopt”,”1gl"”, "tree", "sugiyama"”, "star"”, "nicely”, "manual”, "grid"”,
n n

"mds”, "sphere”,"randomly”, "gem"”, "dh" which defines the graph layout.
Defaults to "circle"”. For more information, see ggraph.

returns a ggplot object or a 1ist of two data. frames.

Author(s)

Marlene Lutz (<marlene. lutz@uzh.ch>)

plotSpatial 25

See Also

countInteractions for counting (but not testing) cell-cell interactions per grouping level. testInteractions
for testing cell-cell interactions per grouping level.

Examples

set.seed(22)
library(cytomapper)
library(BiocParallel)
data(pancreasSCE)

1. countInteractions or testInteractions
sce <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb"”, type = "knn", k = 3)

count_out <- countInteractions(sce,
group_by = "ImageNb",
label = "CellType”,
method = "classic”, # choose from c("classic”, "histocat”, "patch”, "interaction")
colPairName = "knn_interaction_graph")

test_out <- testlInteractions(sce,
group_by = "ImageNb",
label = "CellType",
method = "classic”, # choose from c("classic”, "histocat”, "patch”, "interaction")
colPairName = "knn_interaction_graph”,
iter = 100,
p_threshold = 0.5,
BPPARAM = SerialParam(RNGseed = 123))

2. Plot interactions

default
plotInteractions(count_out, sce, "CellType”, "ImageNb")

adjust node aesthetics

plotInteractions(count_out, sce, "CellType”, "ImageNb",
node_color_by = "name”,
node_size_by = "n_cells")

adjust edge aesthetics
plotInteractions(test_out, sce, "CellType”, "ImageNb",
edge_width_by = "ct")

Plot interactions - return data
plotInteractions(test_out, sce, "CellType”, "ImageNb",
return_data = TRUE)

plotSpatial Visualizes the spatial locations and interactions of cells

Description

A general function to plot spatial locations of cells while specifying color, shape, size. Cell-cell
interactions can be visualized in form of edges between points.

26 plotSpatial

Usage
plotSpatial(
object,
img_id,
coords = c("Pos_X", "Pos_Y"),

node_color_by = NULL,
node_shape_by = NULL,
node_size_by = NULL,
node_color_fix = NULL,
node_shape_fix = NULL,
node_size_fix = NULL,
assay_type = NULL,
draw_edges = FALSE,
directed = TRUE,
edge_color_by = NULL,
edge_width_by = NULL,
edge_color_fix = NULL,
edge_width_fix = NULL,
arrow = NULL,

end_cap = NULL,
colPairName = NULL,
nodes_first = TRUE,

ncols = NULL,
nrows = NULL,
scales = "fixed",
flip_x = FALSE,
flip_y = TRUE,
aspect_ratio = "auto”
)
Arguments
object a SingleCellExperiment or SpatialExperiment object.
img_id single character indicating the colData(object) entry containing the unique
image identifiers.
coords character vector of length 2 specifying the names of the colData (for a SingleCellExperiment

object) or the spatialCoords entries indicating the the cells’ x and y locations.

node_color_by single character indicating the colData(object) entry or marker name by which
the nodes (cell locations) should be colored.

node_shape_by single character indicating the colData(object) entry by which the shape of
the nodes are defined.

node_size_by single character indicating the colData(object) entry by which the size of the
nodes are defined.

node_color_fix single character or numeric specifying the color of all nodes.
node_shape_fix single numeric or character specifying the shape of all nodes.
node_size_fix single numeric specifying the size of all nodes

assay_type single character indicating the assay slot from which to extract the expression
data when node_color_by is set to one of rownames(object).

draw_edges should cell-cell interactions be drawn as edges between nodes?

plotSpatial 27

directed should cell-cell interactions be handled as a directed graph?

edge_color_by single character indicating by which to color the edges. See details for more
information.

edge_width_by single character determining the size of the edges. See details for more informa-
tion.

edge_color_fix single character or numeric specifying the color of all edges.

edge_width_fix single numeric specifying the size of all edges.

arrow an arrow object specifying how to draw arrows between cells.

end_cap a geometry object specifying how long the edges are. This only takes effect
when drawing arrows. Default: end_cap = circle(0.1, 'cm")

colPairName single character specifying the colPair(object) slot to retrieve the cell-cell
pairings.

nodes_first should the nodes be plotted first and then the edges?

ncols number of columns of the grid to arrange individual images.

nrows number of rows of the grid to arrange individual images.

scales one of "free"”, "fixed", "free_x" or "free_y" indicating if x- and y-axis

ranges should be fixed across all images. Defaults to "fixed" to match physical
units on the x- and y-axis.

flip_x flip the x-axis?
flip_y flip the y-axis?

aspect_ratio single numeric, "auto" or NULL to define the relative ratio between the physical
units of the x and y axis. If "auto” (default), the physical units match between
the x and y axis if scales = "fixed". If scales = "free”, the default aspect
ratio is set to 1. Ignore setting the aspect ratio with aspect_ratio = NULL.

Value

returns a ggplot object.

Visualizing cell locations and cell-cell interactions

By default, the cells’ locations are visualized in form of points (here also referred to as "nodes")
on a 2-dimensional plane. The cells’ coordinates are extracted either from colData(object)
slot (for a SingleCellExperiment input object) or from the spatialCoords(object) slot (for
a SpatialExperiment input object). Node aesthetics are controlled by setting node_color_by,
node_shape_by and node_size_by for associating the aesthetics with variables. If node aesthetics
should be the same for all nodes, node_color_fix, node_shape_fix and node_size_fix can be
set.

When draw_edges = TRUE, cell-cell interactions are visualized in form of edges between nodes. For
this, object needs to contain column pairings in colPair (object, colPairName). Edge color and
size can be set by specifying either an entry in mcols(colPair(object, colPairName)) (edge
attributes) or in colData(object). In the latter case, edges are colored by attributes associated to
the "from" node. Variable aesthetics can be set using edge_color_by and edge_width_by. If all
edges should have the same width or color, edge_color_fix and edge_width_fix can be set.

Arrows for displaying directed graphs can be drawn by supplying a arrow object. Arrow attributes
can be set within this class. To cap the edge before it reaches the next node, the end_cap parameter
can be used.

28 plotSpatialContext

Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>)

See Also

buildSpatialGraph for constructing interaction graphs

ggraph for handling graph aesthetics

Examples

library(cytomapper)
data(pancreasSCE)

sce <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",
type = "knn", k = 3, directed = FALSE)

Only nodes

plotSpatial(sce, img_id = "ImageNb",
node_color_by = "CellType",
node_shape_by = "ImageNb",
node_size_by = "Area”,
scales = "free")

With edges and nodes colored by expression
plotSpatial(sce, img_id = "ImageNb",
node_color_by = "PIN",
assay_type = "exprs”,
node_shape_by = "ImageNb”,
node_size_by = "Area”,
draw_edges = TRUE,
colPairName = "knn_interaction_graph”,
edge_color_by = "Pattern”,
scales = "free")

With arrows

plotSpatial(sce, img_id = "ImageNb",
node_color_by = "CellType",
node_shape_by = "ImageNb",
node_size_by = "Area",
draw_edges = TRUE,
colPairName = "knn_interaction_graph”,
edge_color_fix = "green",
arrow = grid::arrow(length = grid::unit(@.1, "inch")),
end_cap = ggraph::circle(0.2, "cm"),
scales = "free")

plotSpatialContext Plot spatial context graph

Description

Function to plot directed spatial context graphs based on symbolic edge-lists and vertex metadata,
which operates on the cohort-level. The user can specify node, node_label and edge aesthetics.

plotSpatialContext 29

Usage
plotSpatialContext(
object,
entry = "spatial_context”,

group_by = "sample_id",
node_color_by = NULL,
node_size_by = NULL,
node_color_fix = NULL,
node_size_fix = NULL,
node_label_repel = TRUE,
node_label_color_by = NULL,
node_label_color_fix = NULL,
draw_edges = TRUE,
edge_color_fix = NULL,
return_data = FALSE

)
Arguments
object a SingleCellExperiment or SpatialExperiment object.
entry single character specifying the colData(object) entry containing the detectSpatialContext
output. Defaults to "spatial_context".
group_by a single character indicating the colData(object) entry by which SCs are

grouped. This is usually the image or patient ID. Defaults to "sample_id".

n o n

node_color_by single character either NULL, "name”, "n_cells"”, "n_group"” by which the nodes
should be colored.

node_size_by single character either NULL, "n_cells”,"n_group” by which the size of the
nodes are defined.

node_color_fix single character specifying the color of all nodes.

node_size_fix single numeric specifying the size of all nodes.
node_label_repel
should nodes be labelled? Defaults to TRUE.
node_label_color_by
single character either NULL, "name”, "n_cells”, "n_group"” by which the node
labels should be colored.
node_label_color_fix
single character specifying the color of all node labels.
draw_edges should edges be drawn between nodes? Defaults to TRUE.
edge_color_fix single character specifying the color of all edges.

return_data should the edge list and vertex metadata for graph construction be returned as a
list of two data. frames?

Value

returns a ggplot object or a 1ist of two data. frames.

Author(s)

Lasse Meyer (<lasse.meyer@uzh.ch>)

30 plotSpatialContext

References

Bhate S. et al., Tissue schematics map the specialization of immune tissue motifs and their appro-
priation by tumors, Cell Systems, 2022

See Also

detectSpatialContext for the function to detect spatial contexts

filterSpatialContext for the function to filter spatial contexts

Examples

set.seed(22)
library(cytomapper)
data(pancreasSCE)

1. Cellular neighborhood (CN)
sce <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",

type = "knn",
name = "knn_cn_graph”,
k = 5)
sce <- aggregateNeighbors(sce, colPairName = "knn_cn_graph”,

aggregate_by = "metadata”,
count_by = "CellType”,
name = "aggregatedCellTypes”)

cur_cluster <- kmeans(sce$aggregatedCellTypes, centers = 3)
sce$cellular_neighborhood <- factor(cur_cluster$cluster)

plotSpatial(sce, img_id = "ImageNb",

colPairName = "knn_cn_graph”,
node_color_by = "cellular_neighborhood”,
scales = "free")

2. Spatial context (SC)

sce <- buildSpatialGraph(sce, img_id = "ImageNb",
type = "knn",
name = "knn_sc_graph”,
k =15)

sce <- aggregateNeighbors(sce, colPairName = "knn_sc_graph",
aggregate_by = "metadata”,
count_by = "cellular_neighborhood”,
name = "aggregatedNeighborhood")

Detect spatial context
sce <- detectSpatialContext(sce, entry = "aggregatedNeighborhood”,
threshold = 0.9)

plotSpatial(sce, img_id = "ImageNb",

colPairName = "knn_sc_graph”,
node_color_by = "spatial_context”,
scales = "free")

Plot spatial context - default
plotSpatialContext(sce, group_by = "ImageNb")

https://doi.org/10.1016/j.cels.2021.09.012
https://doi.org/10.1016/j.cels.2021.09.012

plotSpotHeatmap

31

Plot spatial context - adjust aesthetics
plotSpatialContext(sce, group_by = "ImageNb",

node_color_by = "name",
node_size_by = "n_cells”,
node_label_color_by = "name")

plotSpatialContext(sce, group_by = "ImageNb",

node_color_by = "n_cells”,
node_size_by = "n_group”)

Plot spatial context - return data
plotSpatialContext(sce, group_by = "ImageNb",

return_data = TRUE)

plotSpotHeatmap

Summarizes and visualizes the pixel intensities per spot and channel

Description

Helper function for estimating the spillover matrix. This function visualizes the median pixel inten-
sities per spot (rows) and per channel (columns) in form of a heatmap.

Usage

plotSpotHeatmap(

object,

spot_id = "sample_id",

channel_id =
assay_type =

statistic

log = TRUE,

"channel_name”,
"counts”,

"median”,

threshold = NULL,

order_metals

= TRUE,

color = viridis(100),

breaks =

NA,

legend_breaks = NA,

cluster_cols
cluster_rows

Arguments

object

spot_id

channel_id

= FALSE,
= FALSE,

a SingleCellExperiment object containing pixel intensities per channel. Indi-
vidual pixels are stored as columns and channels are stored as rows.

character string indicating which colData(object) entry stores the isotope
names of the spotted metal. Entries should be of the form (mt)(mass) (e.g.
Sm152 for Samarium isotope with the atomic mass 152).

character string indicating which rowData(object) entry contains the isotope
names of the acquired channels.

32 plotSpotHeatmap

assay_type character string indicating which assay to use (default counts).

statistic the statistic to use when aggregating channels per spot (default median)

log should the aggregated pixel intensities be 1og10(x + 1) transformed?
threshold single numeric indicating a threshold after pixel aggregation. All aggregated

values larger than threshold will be labeled as 1.
order_metals should the metals be ordered based on spotted mass?
color see parameter in pheatmap
breaks see parameter in pheatmap
legend_breaks see parameter in pheatmap
cluster_cols see parameter in pheatmap
cluster_rows see parameter in pheatmap

other arguments passed to pheatmap.

Value

a pheatmap object

Quality control for spillover estimation

Visualizing the aggregated pixel intensities serves two purposes:

1. Small median pixel intensities (< 200 counts) might hinder the robust estimation of the channel
spillover. In that case, consecutive pixels can be summed (see binAcrossPixels).

2. Each spotted metal (row) should show the highest median pixel intensity in its corresponding
channel (column). If this is not the case, either the naming of the .txt files was incorrect or the
incorrect metal was spotted.

By setting the threshold parameter, the user can easily identify spots where pixel intensities are
too low for robust spillover estimation.

Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>)

See Also

pheatmap for visual modifications

aggregateAcrossCells for the aggregation function

Examples

path <- system.file("extdata/spillover”, package = "imcRtools")
Read in .txt files
sce <- readSCEfromTXT(path)

Visualizes heatmap
plotSpotHeatmap(sce)

Visualizes thresholding results
plotSpotHeatmap(sce, log = FALSE, threshold = 200)

readImagefromTXT 33

readImagefromTXT Reads one or multiple .txt files into a CytoImageList object

Description

Reader function to generate Image objects in form of a CytoImagelList container from .txt files.

Usage
readImagefromTXT(
path,
pattern = ".txt$",
channel_pattern = "[A-Za-z]{1,2}[0-91{2,3}Di",
index_names = c("X", "Y"),
BPPARAM = SerialParam()
)
Arguments
path Full path to where the individual .txt files are located. This is usualy the path
where the .mcd file is located.
pattern pattern to select which files should be read in (default ”. txt$").

channel_pattern
regular expression to select the channel names from the files.

index_names exact names of the columns storing the x and y coordinates of the image

BPPARAM parameters for parallelized reading in of images. This is only recommended for
very large images.
Value

returns a CytoImagelList object containing one Image object per .txt file.

Imaging mass cytometry .txt files

As part of the raw data folder, the Hyperion imaging system writes out one .txt file per acquisition.
These files store the ion counts per pixel and channel.

This function reads these .txt files into a single CytoImagelList object for downstream analysis. The
pattern argument allows selection of all .txt files or a specific subset of files. The channelNames
of the CytoImagelist object are determined by the channel_pattern argument.

Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>)

See Also

CytoImagelist for the container
MulticoreParam for parallelized processing
Image for the multi-channel image object

vignette("cytomapper™) for visualization of multi-channel images

34 readSCEfromTIFF

Examples

path <- system.file("extdata/mockData/raw”, package = "imcRtools")
Read in all images

x <- readImagefromTXT(path)

Read in specific files
y <- readImagefromTXT(path, pattern = "ROI_002")

Read in other channelNames
z <- readImagefromTXT(path, channel_pattern = "[A-Za-z]{2}[0-91{3}")

readSCEfromTIFF Generates a SingleCellExperiment from .tiff files

Description

Helper function to process .tiff files created with the steinbock pipeline into a SingleCellExperiment
object. This function is mainly used to read-in data generated from a "spillover slide". Here, each
tiff file contains the measurements of multiple pixels for a single stain across all open channels.

Usage

readSCEfromTIFF(x, image_df_path, panel_df_path, verbose = TRUE)

Arguments

X has to be a path to a folder containing .tiff files.
image_df_path has to be a path to a images.csv file, generated with the steinbock pipeline.
panel_df_path has to be a path to a panel.csv file, generated with the steinbock pipeline.

verbose logical indicating if additional information regarding the spotted and acquired
masses should be shown.

Value

returns a SCE object where pixels are stored as columns and acquired channels are stored as rows.

Reading in .tiff files for spillover correction

As described in the original publication, single metal spots are acquired using the Hyperion imaging
system. Each acquisition corresponds to one spot. All acquisitions are stored in a single .mcd file
and individual acquisitions are stored in single .tiff files after extraction with the steinbock pipeline.

This function aggregates these measurements into a single SingleCellExperiment object:

x is a path: All .tiff files are read in from the specified path. Here, the path should indicate the loca-
tion of the spillover slide measurement. Additionally, the images.csv and panel.csv files generated
with the steinbock pipeline must be passed. The column acquisition_description in images.csv
as well as the column channel in panel.csv must contain the spotted metal isotope name in the for-
mat (mt) (mass) (e.g. Sm152 for Samarium isotope with the atomic mass 152).

readSCEtromTXT 35

Author(s)

Victor Ibafiez (<victor.ibanez@uzh.ch>)

References

Chevrier, S. et al. 2017. “Compensation of Signal Spillover in Suspension and Imaging Mass
Cytometry.” Cell Systems 6: 612-20.

Examples

Read files from path

path <- system.file("extdata/spillover_tiff/img", package = "imcRtools")

image_df_path <- system.file("extdata/spillover_tiff/images.csv", package = "imcRtools")
panel_df_path <- system.file("extdata/spillover_tiff/panel.csv”, package = "imcRtools")

sce <- readSCEfromTIFF(path, image_df_path, panel_df_path)
sce

readSCEfromTXT Generates a SingleCellExperiment from .txt files

Description

Helper function to process raw .txt files acquired by the Hyperion imaging system into a SingleCellExperiment
object. This function is mainly used to read-in data generated from a "spillover slide". Here, each
.txt file contains the measurements of multiple pixels for a single stain across all open channels.

Usage
readSCEfromTXT (
X,
pattern = ".txt$",

metadata_cols = c("Start_push”, "End_push”, "Pushes_duration”, "X", "Y", "Z"),
verbose = TRUE,
read_metal_from_filename = TRUE

Arguments

X input can be of different types:

A path Full path to where the single stain .txt files are located.
A list object A named list object where each entry is a data. frame or coercible
to one. The names of each entry indicate the spotted metals (see details).
pattern pattern to select which files should be read in (default ".txt$"). Only used
when x is a path.
metadata_cols character vector indicating which column entries of the .txt files should be saved
in the colData(sce) slot.

verbose logical indicating if additional information regarding the spotted and acquired

masses should be shown.
read_metal_from_filename

should the sample metal and mass be extracted from the file/object names?

https://www.sciencedirect.com/science/article/pii/S1550413118306910
https://www.sciencedirect.com/science/article/pii/S1550413118306910

36 readSCEfromTXT

Value

returns a SCE object where pixels are stored as columns and acquired channels are stored as rows.

Reading in .txt files for spillover correction

As described in the original publication, single metal spots are acquired using the Hyperion imaging
system. Each acquisition corresponds to one spot. All acquisitions are stored in a single .mcd file
and individual acquisitions are stored in single .txt files.

This function aggregates these measurements into a single SingleCellExperiment object. For
this, two inputs are possible:

1. x is a path: By default all .txt files are read in from the specified path. Here, the path should
indicate the location of the spillover slide measurement. The file names of the .txt file must
contain the spotted metal isotope name in the format (mt) (mass) (e.g. Sm152 for Samarium
isotope with the atomic mass 152). Internally, the last occurrence of such a pattern is read in
as the metal isotope name and stored in the colData(sce)$sample_id slot.

2. x is a named list: If there are issues with reading in the metal isotope names from the .txt file
names, the user can provide a list for which each entry contains the contents of a single .txt
file. The names of the list must indicate the spotted metal in the format (mt) (mass). These
names will be stored in the colData(sce)$sample_id slot.

When read_metal_from_filename = FALSE, the function will not attempt to read in the spotted
metal isotopes from the file or list names. Therefore, only the sample_id will be set based on the
file/list names.

Author(s)

Nils Eling (<nils.eling@dgbm.uzh.ch>)

References

Chevrier, S. et al. 2017. “Compensation of Signal Spillover in Suspension and Imaging Mass
Cytometry.” Cell Systems 6: 612-20.

Examples

Read files from path
path <- system.file("extdata/spillover”, package = "imcRtools")

sce <- readSCEfromTXT(path)
sce

Read files as list

cur_file_names <- list.files(path, pattern = ".txt", full.names = TRUE)
cur_files <- lapply(cur_file_names, read.delim)

names(cur_files) <- sub(”.txt"”, "", basename(cur_file_names))

sce <- readSCEfromTXT(cur_files)
sce

https://www.sciencedirect.com/science/article/pii/S1550413118306910
https://www.sciencedirect.com/science/article/pii/S1550413118306910

read_cpout 37

read_cpout Reads in single-cell data generated by the ImcSegmentationPipeline

Description

Reader function to generate a SpatialExperiment or SingleCellExperiment object from single-
cell data obtained by the ImcSegmentationPipeline pipeline.

Usage
read_cpout(
path,
object_file = "cell.csv",
image_file = "Image.csv"”,
panel_file = "panel.csv",
graph_file = "Object relationships.csv”,
object_feature_file = "var_cell.csv",
intensities = "Intensity_MeanIntensity_FullStack”,
extract_imgid_from = "ImageNumber”,
extract_cellid_from = "ObjectNumber”,
extract_coords_from = c("Location_Center_X", "Location_Center_Y"),

extract_cellmetadata_from = c("AreaShape_Area”, "Neighbors_NumberOfNeighbors_8",
"AreaShape_Eccentricity”, "AreaShape_MajorAxislLength”, "AreaShape_MinorAxislLength”,
"AreaShape_MeanRadius"),

extract_imagemetadata_from = c("Metadata_acname”, "Metadata_acid”,
"Metadata_description”),
extract_graphimageid_from = "First Image Number”,
extract_graphcellids_from = c("First Object Number”, "Second Object Number”),
extract_metal_from = "Metal Tag",
scale_intensities = TRUE,
extract_scalingfactor_from = "Scaling_FullStack”,
return_as = c("spe”, "sce")
)
Arguments
path full path to the CellProfiler output folder.
object_file single character indicating the file name storing the object/cell-specific intensi-
ties and metadata.
image_file single character indicating the file name storing meta data per image (can be
NULL).
panel_file single character indicating the file name storing the panel information (can be
NULL).
graph_file single character indicating the file name storing the object/cell interaction infor-

mation (can be NULL).
object_feature_file
single character indicating the file name storing object/cell feature information.

intensities single character indicating which column entries of the object_file contain
the intensity features of interest. See details.

https://github.com/BodenmillerGroup/ImcSegmentationPipeline

38 read_cpout

extract_imgid_from
single character indicating which column entries of the object_file and image_file
contain the image integer ID.

extract_cellid_from
single character indicating which column entry of the object_f1ile contains the
object/cell integer ID.

extract_coords_from
character vector indicating which column entries of the object_file contain
the x and y location of the objects/cells.

extract_cellmetadata_from
character vector indicating which additional object/cell specific metadata to ex-
tract from the object_file.

extract_imagemetadata_from
character vector indicating which additional image specific metadata to extract
from the image_file. These will be stored in the colData(x) slot as object/cell-
specific entries.

extract_graphimageid_from
single character indicating which column entries of the graph_file contain the
image integer ID.

extract_graphcellids_from
character vector indicating which column entries of the graph_file contain the
first and second object/cell integer IDs. These will be stored as the from and to
entry of the SelfHits object in colPair(x, "neighborhood").

extract_metal_from
single character indicating which column entry of the panel_file contains the
metal isotopes of the used antibodies. This entry is used to match the panel
information to the acquired channel information.

scale_intensities
single logical. Should the measured intensity features be scaled by extract_scalingfactor_from.

extract_scalingfactor_from
single character indicating which column entries of the image_file contain the
image specific scaling factor.

return_as should the object be returned as SpatialExperiment (return_as = "spe") or
SingleCellExperiment (return_as = "sce").

Value

returns a SpatialExperiment or SingleCellExperiment object with markers in rows and cells in
columns.

The returned data container

In the case of both containers x, intensity features (as selected by the intensities parameter)

are stored in the counts(x) slot. Cell metadata (e.g morphological features) are stored in the
colData(x) slot. The interaction graphs are stored as SelfHits object in the colPair(x, "neighborhood”)
slot.

Intensity features are extracted via partial string matching. Internally, the read_cpout function
checks if per channel a single intensity feature is read in (by checking the _cXY ending where XY is
the channel number).

In the case of areturned SpatialExperiment object, the cell coordinates are stored in the spatialCoords(x)
slot.

read_steinbock 39

In the case of a returned SingleCellExperiment object, the cell coordinates are stored in the
colData(x) slot named as Pos_X and Pos_Y.
Author(s)

Tobias Hoch
Nils Eling (<nils.eling@dgbm.uzh.ch>)

See Also

https://github.com/BodenmillerGroup/ImcSegmentationPipeline for the pipeline
read_steinbock for reading in single-cell data as produced by the steinbock pipeline

colPair for information on how to work with the cell-cell interaction graphs
Examples
path <- system.file("extdata/mockData/cpout”, package = "imcRtools")

Read in as SpatialExperiment object
x <- read_cpout(path, graph_file = "Object_relationships.csv")

ETS

Read in as SingleCellExperiment object
x <- read_cpout(path, graph_file = "Object_relationships.csv”,
return_as = "sce")

read_steinbock Reads in single-cell data generated by the steinbock pipeline

Description

Reader function to generate a SpatialExperiment or SingleCellExperiment object from single-
cell data obtained by the steinbock pipeline.

Usage

read_steinbock(
path,
intensities_folder = "intensities”,
regionprops_folder "regionprops”,
graphs_folder = "neighbors”,
pattern = NULL,
extract_cellid_from = "Object”,

extract_coords_from = c("centroid-1", "centroid-0"),
image_file = "images.csv",

extract_imagemetadata_from = c("width_px", "height_px"),
panel_file = "panel.csv",

extract_names_from = "name",

return_as = c("spe”, "sce"),

BPPARAM = SerialParam()

https://github.com/BodenmillerGroup/ImcSegmentationPipeline
https://github.com/BodenmillerGroup/steinbock

40 read_steinbock

Arguments

path full path to the steinbock output folder

intensities_folder
name of the folder containing the intensity measurements per image

regionprops_folder
name of the folder containing the cell-specific morphology and spatial mea-
surements per image. Can be set to NULL to exclude reading in morphology
measures.

graphs_folder name of the folder containing the spatial connectivity graphs per image. Can be
set to NULL to exclude reading in graphs.

pattern regular expression specifying a subset of files that should be read in.

extract_cellid_from
single character indicating which column entry in the intensity files contains the
integer cell id.

extract_coords_from
character vector indicating which column entries in the regionprops files contain
the x (first entry) and y (second entry) coordinates.

image_file single character indicating the file name storing meta data per image (can be
NULL).

extract_imagemetadata_from
character vector indicating which additional image specific metadata to extract
from the image_file. These will be stored in the colData(x) slot as object/cell-
specific entries.

panel_file single character containing the name of the panel file. This can either be inside
the steinbock path (recommended) or located somewhere else.

extract_names_from
single character indicating the column of the panel file containing the channel

names.
return_as should the object be returned as SpatialExperiment (return_as = "spe") or
SingleCellExperiment (return_as = "sce").
BPPARAM parameters for parallelised processing.
Value

returns a SpatialExperiment or SingleCellExperiment object markers in rows and cells in
columns.

The returned data container

In the case of both containers X, intensity features are stored in the counts(x) slot. Morpholog-
ical features are stored in the colData(x) slot. The graphs are stored as SelfHits object in the
colPair(x, "neighborhood") slot.

In the case of a returned SpatialExperiment object, the cell coordinates are stored in the spatialCoords(x)
slot.

In the case of a returned SingleCellExperiment object, the cell coordinates are stored in the
colData(x) slot named as Pos_X and Pos_Y.

Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>)

show_cpout_features 41

See Also

https://github.com/BodenmillerGroup/steinbock for the pipeline

read_cpout for reading in single-cell data as produced by the ImcSegmentationPipeline

SingleCellExperiment and SpatialExperiment for the constructor functions.

colPair for information on how to work with the cell-cell interaction graphs

bpparam for the parallelised backend

Examples

path <- system.file("extdata/mockData/steinbock”, package = "imcRtools")

#
X

Read in as SpatialExperiment object
<- read_steinbock(path)

Read in as SingleCellExperiment object
x <- read_steinbock(path, return_as = "sce")

Read in a subset of files
x <- read_steinbock(path, pattern = "mockDatal”)

Only read in intensities
x <- read_steinbock(path, graphs_folder = NULL, regionprops_folder = NULL)

Parallelisation

<- read_steinbock(path, BPPARAM = BiocParallel: :bpparam())

show_cpout_features Display all features measured by CellProfiler.

Description

Searchable datatable object of cell and image features as extracted by CellProfiler.

Usage

show_cpout_features(

path,

display = c("cell_features”, "image_features”),
cell_features = "var_cell.csv”,

image_features = "var_Image.csv"

https://github.com/BodenmillerGroup/steinbock

42 testInteractions

Arguments
path full path to the CellProfiler output folder
display single character indicating which features to display. Accepted entries are cell_features

to display extracted single-cell features or image_features to display extracted
image-level features.

cell_features single character indicating the name of the file storing the extracted cell features.

image_features single character indicating the name of the file storing the extracted image fea-
tures.

Value

a datatable object

Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>)

See Also

read_cpout for the CellProfiler reader function
Examples
path <- system.file("extdata/mockData/cpout”, package = "imcRtools")

Display cell features
show_cpout_features(path)

Display image features

show_cpout_features(path, display = "image_features”)
testInteractions Tests if cell types interact more or less frequently than random
Description

Cell-cell interactions are summarized in different ways and the resulting count is compared to a
distribution of counts arising from random permutations.

Usage

testInteractions(
object,
group_by,
label,
colPairName,
method = c("classic”, "conditional”, "patch”, "interaction"),
patch_size = NULL,
iter = 1000,
p_threshold = @.01,

testInteractions 43

return_samples = FALSE,
tolerance = sqrt(.Machine$double.eps),
BPPARAM = SerialParam()

)
Arguments

object a SingleCellExperiment or SpatialExperiment object.

group_by a single character indicating the colData(object) entry by which interactions
are grouped. This is usually the image ID or patient ID.

label single character specifying the colData(object) entry which stores the cell
labels. These can be cell-types labels or other metadata entries.

colPairName single character indicating the colPair(object) entry containing cell-cell in-
teractions in form of an edge list.

method which cell-cell interaction counting method to use (see details)

patch_size if method = "patch”, a single numeric specifying the minimum number of neigh-
bors of the same type to be considered a patch (see details)

iter single numeric specifying the number of permutations to perform

p_threshold single numeric indicating the empirical p-value threshold at which interactions

are considered to be significantly enriched or depleted per group.

return_samples single logical indicating if the permuted interaction counts of all iterations should
be returned.

tolerance single numeric larger than 0. This parameter defines the difference between
the permuted count and the actual counts at which both are regarded as equal.
Default taken from all.equal.

BPPARAM parameters for parallelized processing.

Value

a DataFrame containing one row per group_by entry and unique label entry combination (from_label,
to_label). The object contains following entries:

* ct: stores the interaction count as described in the details
* p_gt: stores the fraction of perturbations equal or greater than ct
* p_1lt: stores the fraction of perturbations equal or less than ct

* interaction: is there the tendency for a positive interaction (attraction) between from_label
and to_label? Is p_1t greater than p_gt?

¢ p: the smaller value of p_gt and p_1t.
e sig: is p smaller than p_threshold?
¢ sigval: Combination of interaction and sig.

— -1: interaction == FALSE and sig == TRUE
— 0: sig == FALSE
— 1: interaction == TRUE and sig == TRUE

NA is returned if a certain label is not present in this grouping level.

44 testInteractions

Counting and summarizing cell-cell interactions

In principle, the countInteractions function counts the number of edges (interactions) between
each set of unique entries in colData(object)[[label]]. Simplified, it counts for each cell
of type A the number of neighbors of type B. This count is averaged within each unique entry
colData(object)[[group_by]] in four different ways:

1. method = "classic”: The count is divided by the total number of cells of type A. The final count
can be interpreted as "How many neighbors of type B does a cell of type A have on average?"

2. method = "conditional”: Formerly named "histocat". The count is divided by the number of
cells of type A that have at least one neighbor of type B. The final count can be interpreted as "How
many neighbors of type B has a cell of type A on average, given it has at least one neighbor of type
B?".

3. method = "patch”: For each cell, the count is binarized to O (less than patch_size neighbors of
type B) or 1 (more or equal to patch_size neighbors of type B). The binarized counts are averaged
across all cells of type A. The final count can be interpreted as "What fraction of cells of type A
have at least a given number of neighbors of type B?"

4. method = "interaction”: The count is divided by the total number of interactions from cell
type A. The final count can be interpreted as the fraction of interactions of cell type A that occur
with cell type B.

Testing for significance

Within each unique entry to colData(object) [[group_by]], the entries of colData(object)[[label]]
are randomized iter times. For each iteration, the interactions are counted as described above. The

result is a distribution of the interaction count under spatial randomness. The observed interaction

count is compared against this Null distribution to derive empirical p-values:

p_gt: fraction of perturbations equal or greater than the observed count
p_lt: fraction of perturbations equal or less than the observed count

Based on these empirical p-values, the interaction score (attraction or avoidance), overall p value
and significance by comparison to p_treshold (sig and sigval) are derived.

Author(s)

Vito Zanotelli

Jana Fischer

adapted by Nils Eling (<nils.eling@dgbm.uzh.ch>)

adapted by Marlene Lutz (<marlene.lutz@uzh.ch>)

adapted by Chiara Schiller (<chiara.schiller@uni-heidelberg.de>)

References

Schulz, D. et al., Simultaneous Multiplexed Imaging of mRNA and Proteins with Subcellular Res-
olution in Breast Cancer Tissue Samples by Mass Cytometry., Cell Systems 2018 6(1):25-36.e5

Schapiro, D. et al., histoCAT: analysis of cell phenotypes and interactions in multiplex image cy-
tometry data, Nature Methods 2017 14, p. 873-876

Schiller, C. et al., Comparison and Optimization of Cellular Neighbor Preference Methods for
Quantitative Tissue Analysis, biorRxiv 2025.03.31.646289

https://www.sciencedirect.com/science/article/pii/S2405471217305434
https://www.sciencedirect.com/science/article/pii/S2405471217305434
https://www.nature.com/articles/nmeth.4391
https://www.nature.com/articles/nmeth.4391
https://doi.org/10.1101/2025.03.31.646289
https://doi.org/10.1101/2025.03.31.646289

testInteractions

See Also

countInteractions for counting (but not testing) cell-cell interactions per grouping level.

bpparam for the parallelised backend

Examples

library(cytomapper)
library(BiocParallel)
data(pancreasSCE)

pancreasSCE <- buildSpatialGraph(pancreasSCE, img_id = "ImageNb",
type = "knn", k = 3)

Classic style calculation - setting the seed inside SerialParam for reproducibility
(out <- testInteractions(pancreasSCE,

group_by = "ImageNb",

label = "CellType”,

method = "classic”,
colPairName = "knn_interaction_graph”,
iter = 1000,

BPPARAM = SerialParam(RNGseed = 123)))

Conditional style calculation

(out <- testInteractions(pancreasSCE,
group_by = "ImageNb",
label = "CellType”,

method = "conditional”,
colPairName = "knn_interaction_graph”,
iter = 1000,

BPPARAM = SerialParam(RNGseed = 123)))

Patch style calculation
(out <- testInteractions(pancreasSCE,
group_by = "ImageNb",
label = "CellType”,
method = "patch”,
patch_size = 3,
colPairName = "knn_interaction_graph”,
iter = 1000,
BPPARAM = SerialParam(RNGseed = 123)))

Interaction style calculation
(out <- testInteractions(pancreasSCE,
group_by = "ImageNb",
label = "CellType”,
method = "interaction”,
colPairName = "knn_interaction_graph"))

45

Index

aggregateAcrossCells, 5, 32 readSCEfromTIFF, 34
aggregateNeighbors, 2, 12 readSCEfromTXT, 35
arrow, 27

SelfHits, 38, 40
binAcrossPixels, 4, 32 show_cpout_features, 41
BiocNeighborParam, 6, 7 SingleCellExperiment, 34, 35, 37—41
bpparam, 41, 45 SpatialExperiment, 3741

buildSpatialGraph, 5, 12, 28

testInteractions, 9, 25, 42
channelNames, 33 triangulate, 6, 7
colPair, 39, 41
countInteractions, 8, 25, 44, 45
CytoImagelist, 33

datatable, 42

detectCommunity, 10
detectSpatialContext, 12, 18, 29, 30
distToCells, 14

filterPixels, 15
filterSpatialContext, 13, 17, 30
findBorderCells, 19
findKNN, 6, 7
findNeighbors, 6, 7

geometry, 27
ggraph, 24, 28

Image, 33
KmknnParam, 7
MulticoreParam, 33

patchDetection, 20
patchSize, 22

pheatmap, 32
plotInteractions, 23
plotSpatial, 7, 25
plotSpatialContext, 13, 18, 28
plotSpotHeatmap, 31

read_cpout, 37, 41, 42
read_steinbock, 39, 39
readImagefromTXT, 33

46

	aggregateNeighbors
	binAcrossPixels
	buildSpatialGraph
	countInteractions
	detectCommunity
	detectSpatialContext
	distToCells
	filterPixels
	filterSpatialContext
	findBorderCells
	patchDetection
	patchSize
	plotInteractions
	plotSpatial
	plotSpatialContext
	plotSpotHeatmap
	readImagefromTXT
	readSCEfromTIFF
	readSCEfromTXT
	read_cpout
	read_steinbock
	show_cpout_features
	testInteractions
	Index

